Controlling the motion of interacting particles: homogeneous systems and binary mixtures.
نویسندگان
چکیده
We elaborate on recent results on the transport of interacting particles for both single-species and binary mixtures subject to an external driving on a ratchetlike asymmetric substrate. Moreover, we also briefly review motion control without any spatial asymmetric potential (i.e., no ratchet). Our results are obtained using an analytical approach based on a nonlinear Fokker-Planck equation as well as via numerical simulations. By increasing the particle density, the net dc ratchet current in our alternating (ac)-driven systems can either increase or decrease depending on the temperature, the drive amplitude, and the nature of the inter-particle interactions. This provides an effective control of particle motion by just changing the particle density. At low temperatures, attracting particles can condense at some potential minima, thus breaking the discrete translational symmetry of the substrate. Depending on the drive amplitude, an agglomeration or condensation results either in a drop to zero or in a saturation of the net particle velocity at densities above the condensation density-the latter case producing a very efficient rectification mechanism. For binary mixtures we find three ways of controlling the particle motion of one (passive) B species by means of another (active) A species: (i) Dragging the target particles B by driving the auxiliary particles A, (ii) rectifying the motion of the B particles on the asymmetric potential created by the A-B interactions, and (iii) dynamically modifying (pulsating) this potential by controlling the motion of the A particles. This allows to easily control the magnitude and direction of the velocity of the target particles by changing either the frequency, phase and/or amplitude of the applied ac drive(s).
منابع مشابه
Study of Pressure Drop in the 2D Spouted Bed with Conical Base of Binary Particle Mixtures: Effects of Particle Size and Density
In this study, the pressure drop for the binary mixtures of particles differing in size and density in a pseudo-2D spouted bed was experimentally studied. A binary mixture of solid particles including sand, Gypsum, and polyurethane was used in the experimental setup. Effects of static bed height, cone angle, particles diameter, and a particles weight fraction on the bed pressure drop were e...
متن کاملStudy of Volumetric Properties of N,N-Dimethyl Acetamide and 1-Alkanols Binary Mixtures at 298.15 K
In this study, the densities, excess molar volumes and partial molar volumes of four binary systems containing N,N-dimethyl acetamide (DMAc) with 1-alkanols (1-butanol up to 1-heptanol) are measured at 298.15 K. The results showed both constructive and expansive excess volumetric behavior for studying binary mixtures. Deviation values of heavy alcohol have more positive and less negative excess...
متن کاملManipulating small particles in mixtures far from equilibrium.
The motion of two interacting species of small particles, coupled differently to their environment, is studied both analytically and via numerical simulations. We find three ways of controlling the particle motion of one (passive) B species by means of another (active) A species: (i) dragging the target particles B by driving the auxiliary particles A, (ii) rectifying the motion of the B specie...
متن کاملBinary mixtures of disks and elongated particles: Texture and mechanical properties.
We analyze the shear strength and microstructure of binary granular mixtures consisting of disks and elongated particles by varying systematically both the mixture ratio and degree of homogeneity (from homogeneous to fully segregated). The contact dynamics method is used for numerical simulations with rigid particles interacting by frictional contacts. A counterintuitive finding of this work is...
متن کاملA Thermodynamic Study of Complex Formation between 15-Crown-5 with Mg2+, Ca2+, Sr2+ and Ba2+ in Acetonitrile Methanol Binary Mixtures Using Conductometric Method
The complexation reactions between Mg2+, Ca2+, Sr2+ and Ba2+ metal cations with 15-crown-5 (15C5) were studied in acetonitrile (AN)-methanol (MeOH) binary mixtures at different temperatures using conductometric method. 15C54 forms 1:1 complexes with Mg2+, Ca2+ and Sr2+ cations in solutions. The Ma2+ cati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chaos
دوره 15 2 شماره
صفحات -
تاریخ انتشار 2005